8. Ранний палеозой: «выход жизни на сушу». Появление почв и почвообразователей. Высшие растения и их средообразующая роль. Тетраподизация кистеперых рыб.



Вплоть до самого недавнего времени человек выносил из школьного учебника биологии и популярных книг по теории эволюции такую примерно картину события, именуемого обычно «Выходом жизни на сушу». В начале девонского периода (или в конце силурийского) на берегах морей (точнее – морских лагун) появились заросли первых наземных растений – псилофитов (рисунок 29, а), положение коих в системе растительного царства остается не вполне ясным. Растительность сделала возможным появление на суше беспозвоночных животных – многоножек, паукообразных и насекомых; беспозвоночные, в свою очередь, создали пищевую базу для наземных позвоночных – первых амфибий (ведущих свое происхождение от кистеперых рыб) – таких, как ихтиостега (рисунок 29, б). Наземная жизнь в те времена занимала лишь чрезвычайно узкую прибрежную полоску, за которой простирались необозримые пространства абсолютно безжизненных первичных пустынь.
РИСУНОК 29. (а) – Реконструкция ландшафта Райни (девон Шотландии) с зарослями псилофитов; (б) – древнейшее наземное позвоночное – ихтиостега (девон Гренландии).

РИСУНОК 29. (а) – Реконструкция ландшафта Райни (девон Шотландии) с зарослями псилофитов; (б) – древнейшее наземное позвоночное – ихтиостега (девон Гренландии).
Так вот, согласно современным представлениям, в означенной картине неверным (или, по меньшей мере, неточным) является практически всё – начиная с того, что достаточно развитая наземная жизнь достоверно существовала много раньше (уже в следующем за кембрием ордовикском периоде), и кончая тем, что упомянутые «первые амфибии» наверняка были существами чисто водными, не имеющими связи с сушей. Дело, однако, даже не в этих частностях (о них мы поговорим в свой черед). Важнее другое: скорее всего, принципиально неверна сама формулировка – «Выход живых организмов на сушу». Есть серьезные основания полагать, что сухопутные ландшафты современного облика в те времена вообще отсутствовали, и живые организмы не просто вышли на сушу, а в некотором смысле создали ее как таковую. Впрочем, давайте по порядку.
Итак, первый вопрос – когда; когда же все#x2011;таки на Земле появились первые несомненно наземные организмы и экосистемы? Однако тут сразу возникает встречный вопрос: а как определить, что некий вымерший организм, с которым мы столкнулись – именно наземный? Это вовсе не так просто, как кажется на первый взгляд, ибо принцип актуализма здесь будет работать с серьезными сбоями. Типичный пример: начиная с середины силурийского периода в палеонтологической летописи появляются скорпионы – животные по нынешним временам вроде бы сугубо сухопутные. Однако сейчас уже достаточно твердо установлено, что палеозойские скорпионы[29] дышали жабрами и вели водный (или, по крайней мере, амфибиотический) образ жизни; наземные же представители отряда, у которых жабры превращены в характерные для паукообразных легкие «книжечного» типа (book#x2011;lungs), появились лишь в начале мезозоя. Следовательно, находки в силурийских отложениях скорпионов сами по себе ничего (в интересующем нас плане) не доказывают.
Более продуктивно здесь, как кажется, отслеживать появление в летописи не наземных (по нынешним временам) групп животных и растений, а определенных анатомических признаков «сухопутности». Так, например, растительная кутикула с устьицами и остатки проводящих тканей – трахеид наверняка должны принадлежать наземным растениям: под водой, как легко догадаться, и устьица, и проводящие сосуды ни к чему... Однако существует и иной – воистину замечательный!– интегральный показатель существования в данное время наземной жизни. Подобно тому, как показателем существования на планете фотосинтезирующих организмов является свободный кислород, показателем существования наземных экосистем может служить почва: процесс почвообразования идет только на суше, а ископаемые почвы (палеопочвы) хорошо отличимы по структуре от любых типов донных отложений.
Надо заметить, что почва сохраняется в ископаемом состоянии не слишком часто; лишь в последние десятилетия на палеопочвы перестали смотреть как на некую экзотическую диковинку и начали их систематическое изучение. В итоге в изучении древних кор выветривания (а почва есть не что иное, как биогенная кора выветривания) произошла подлинная революция, буквально перевернувшая прежние представления о жизни на суше. Самые древние палеопочвы найдены в глубоком докембрии – в раннем протерозое; в одной из них, имеющей возраст 2,4 млрд лет, С.Кемпбелл (1985) обнаружил несомненные следы жизнедеятельности фотосинтезирующих организмов – углерод со смещенным изотопным отношением 12С/13С. В этой связи можно упомянуть и обнаруженные недавно остатки цианобактериальных построек в протерозойских карстовых полостях: процессы карстования – образование котловин и пещер в водорастворимых осадочных породах (известняки, гипсы) – могут идти только на суше.
Другим фундаментальным открытием в этой области следует считать обнаружение Г.Реталляком (1985) в ордовикских палеопочвах вертикальных норок, прорытых какими#x2011;то достаточно крупными животными – видимо, членистоногими или олигохетами (дождевыми червями)[30]; в этих почвах нет никаких корней (которые обычно сохраняются очень хорошо), но есть своеобразные трубчатые тельца – Реталляк интерпретирует их как остатки несосудистых растений и/или наземных зеленых водорослей. В несколько более поздних, силурийских, палеопочвах найдены копролиты (окаменевшие экскременты) каких#x2011;то почвообитающих животных; пищей им, судя по всему, служили гифы грибов, составляющие заметную долю вещества копролитов (впрочем, не исключено, что грибы могли и вторично развиться на органике, содержащейся в копролитах).
Итак, к настоящему моменту два факта могут считаться установленными достаточно твердо:
1. Жизнь появилась на суше очень давно, в среднем докембрии. Она была представлена, судя по всему, различными вариантами водорослевых корок (в том числе – амфибиотическими матами) и, возможно, лишайниками[31]; все они могли осуществлять процессы архаичного почвообразования.
2. Животные (беспозвоночные) существовали на суше по меньшей мере с ордовика, т.е. задолго до появления высшей растительности (чьи достоверные следы по#x2011;прежнему остаются неизвестными до позднего силура). Средой обитания и пищей этим беспозвоночным могли служить упомянутые выше водорослевые корки; при этом сами животные неизбежно становились мощным почвообразующим фактором.
Последнее обстоятельство заставляет вспомнить одну старую дискуссию – о двух возможных путях заселения суши беспозвоночными. Дело в том, что неморские ископаемые этого возраста были очень редки, и все гипотезы на сей предмет казались лишь более или менее убедительными спекуляциями, не подлежащими реальной проверке. Одни исследователи предполагали, что животные вышли из моря напрямую – через литораль с водорослевыми выбросами и иными укрытиями; другие настаивали на том, что сперва были заселены пресноводные водоемы, и лишь с этого «плацдарма» началось впоследствии «наступление» на сушу. Среди сторонников первой точки зрения выделялись своей убедительностью построения М.С.Гилярова (1947), который, основываясь на сравнительном анализе адаптаций современных почвообитающих животных, доказывал, что именно почва должна была служить первичной средой обитания самых ранних жителей суши[32]. При этом надо учитывать, что почвенная фауна действительно крайне плохо попадает в палеонтологическую летопись и отсутствие ископаемых «документов» здесь вполне объяснимо. У этих построений, однако, был один по#x2011;настоящему уязвимый пункт: а откуда же взялась сама эта почва, если в те времена еще не было наземной растительности? Всем ведь известно, что почвообразование идет при участии высших растений – сам Гиляров называл настоящими почвами лишь те, что связаны с ризосферой, а все прочее – корами выветривания... Однако теперь – когда стало известно, что примитивное почвообразование возможно и с участием одних лишь низших растений – концепция Гилярова обрела «второе дыхание», а недавно была впрямую подтверждена данными Реталляка по ордовикским палеопочвам.
С другой стороны, несомненные пресноводные фауны (которые содержат, помимо всего прочего, дорожки следов на поверхности осадка) появляются намного позже – в девоне. В их состав входят скорпионы, мелкие (примерно в ладонь величиной) ракоскорпионы, рыбы и первые неморские моллюски; среди моллюсков есть и двустворчатые – длительно живущие организмы, неспособные переносить заморы и пересыхание водоемов. Фауны же с такими бесспорно#x2011;почвенными животными, как тригонотарбы («панцирные пауки») и растительноядные двупарноногие многоножки существуют уже в силуре (лудловский век). А поскольку водная фауна всегда попадает в захоронения на порядок лучше, чем наземная, то все это позволяет сделать еще один вывод:
3. Почвенная фауна появилась существенно раньше пресноводной. То есть – по крайней мере для животных пресные воды не могли играть роль «плацдарма» при завоевании суши.
Этот вывод, однако, заставляет нас вернуться к тому самому вопросу, с которого мы начинали свои рассуждения, а именно: вышли живые организмы на сушу или фактически создали ее как таковую? А.Г.Пономаренко (1993) полагает, что все сообщества, о которых шла речь выше, на самом деле трудно с определенностью назвать «наземными» или «сообществами внутриконтинентальных водоемов» (хотя по крайней мере маты должны были существенную часть времени находиться в воде). Он считает, что «существование настоящих континентальных водоемов, как текучих, так и стоячих, представляется весьма проблематичным до того, как в девоне сосудистая растительность несколько снизила скорость эрозии и стабилизировала береговую линию». Основные события должны были происходить в уже знакомых нам выположенных прибрежных амфибиотических ландшафтах без стабильной береговой линии – «не суша, не море» (см. главу 5 ).
Не менее необычная (с точки зрения сегодняшнего дня) обстановка должна была складываться и на водоразделах, занятых «первичными пустынями». В наши дни пустыни существуют в условиях недостатка влаги (при превышении испарения над выпадением осадков) – что и препятствует развитию растительности. А вот в отсутствие растений ландшафт парадоксальным образом становился тем более пустынным (по облику), чем больше выпадало осадков: вода активно размывала горные склоны, прорезая глубокие каньоны, при выходе на равнину давала конгломераты, а дальше по равнине распространялись разрозненные по поверхности псефиты[33], которые называют равнинным пролювием; ныне такие отложения слагают лишь конусы выноса временных водотоков.
Эта картина позволяет по#x2011;новому взглянуть на одно странное обстоятельство. Почти все известные силурийско#x2011;девонские наземные флоры и фауны найдены в различных точках древнего Континента красного песчаника (Old Red Sandstone), названного так по характерным для него породам – красноцветам; все местонахождения при этом связаны с отложениями, считающимися дельтовыми. Иными словами, выходит, что весь этот континент (объединявший Европу и восток Северной Америки) представляет собой как бы одну сплошную гигантскую дельту. Резонный вопрос: а где же располагались соответствующие реки – ведь для них на континенте таких размеров просто нет площадей водосбора! Остается предположить что все эти «дельтовые» отложения, по всей видимости, возникали именно в результате процессов эрозии в описанных выше «мокрых пустынях».
Итак, жизнь на суше (которая, впрочем, не вполне еще суша) вроде бы существует с незапамятных времен, а в конце силура просто#x2011;напросто появляется еще одна группа растений – сосудистые (Tracheophyta)... Однако на самом деле появление сосудистых растений – одно из ключевых событий в истории биосферы, ибо по своей средообразующей роли эта группа живых организмов не имеет себе равных, по крайней мере, среди эукариот. Именно сосудистая растительность и внесла, как мы увидим далее, решающий вклад в становление наземных ландшафтов современного облика.
Общепринятой считается та точка зрения, что некие водоросли, жившие вблизи берега, сначала «высунули голову на воздух», затем заселили приливно#x2011;отливную зону, а потом, постепенно превращаясь в высшие растения, целиком вышли на берег. За этим последовало постепенное завоевание ими суши. Предками высших растений большинство ботаников считает одну из групп зеленых водорослей – харовых (Charophyta); они образуют ныне сплошные заросли на дне континентальных водоемов – как пресных, так и соленых, тогда как в море (да и то лишь в опресненных заливах) найдены всего несколько видов. Харовые обладают дифференцированным талломом и сложно устроенными органами размножения; с высшими растениями их сближают несколько уникальных анатомических и цитологических признаков – симметричные спермии, присутствие фрагмопласта (структуры, участвующей в построении клеточной стенки в процессе деления) и наличие одинакового набора фотосинтетических пигментов и запасных питательных веществ.
Однако против этой точки зрения выдвигалось серьезное – чисто палеонтологическое – возражение. Если процесс преобразования водорослей в высшие растения действительно происходил в прибрежных водах (где условия для попадания в палеонтологическую летопись наиболее благоприятны), то почему мы не видим никаких его промежуточных стадий? Тем более, что и сами харовые появляются в позднем силуре – одновременно с сосудистыми растениями, а особенности биологии этой группы не дают оснований оснований предполагать для нее длительный период «скрытого существования»...
Поэтому появилась парадоксальная, на первый взгляд, гипотеза: а почему, собственно говоря, появление макроостатков высших растений в конце силура должно однозначно трактоваться как следы их выхода на сушу? Может быть, совсем наоборот – это следы переселения высших растений в воду? Во всяком случае, многие палеоботаники (С.В.Мейен, Г.Стеббинс, Г.Хилл) активно поддерживали гипотезу о происхождении высших растений не от водных макрофитов (типа харовых), а от наземных зеленых водорослей. Именно этим сухопутным (а потому не имеющим реальных шансов попасть в захоронения) «первичным высшим растениям» могли принадлежать загадочные споры с трехлучевой щелью, которые весьма многочисленны в раннем силуре и даже в позднем ордовике (начиная с карадокского века).
Впрочем, недавно выяснилось, что, судя по всему, правы сторонники обеих точек зрения – каждые по#x2011;своему. Дело в том, что некоторые из микроскопических наземных зеленых водорослей имеют тот же самый комплекс тонких цитологических признаков, что харовые и сосудистые (см. выше); эти микроводоросли теперь стали включать в состав Charophyta. Таким образом, возникает вполне логичная и непротиворечивая картина. Первоначально существовала – на суше – группа зеленых водорослей («микроскопические харовые»), от которой в силуре произошли две близкородственные группы: «настоящие» харовые, заселившие континентальные водоемы, и высшие растения, начавшие осваивать сушу, и лишь спустя некоторое время (в полном соответствии со схемой Мейена) появившиеся в прибрежных местообитаниях.
Из курса ботаники вам должно быть известно, что высшие растения (Embryophyta) делятся на сосудистые (Tracheophyta) и мохообразные (Bryophyta) – мхи и печеночники. Многие ботаники (например, Дж.Ричардсон, 1992) считают, что именно печеночники (если исходить из их современных жизненных стратегий) – главные претенденты на роль «первопроходцев суши»: они живут ныне на наземных водорослевых пленках, в мелководных эфемерных водоемах, в почве – совместно с синезелеными водорослями. Интересно, что азотфиксирующая сине#x2011;зеленая водоросль Nostoc способна жить внутри тканей некоторых печеночников и антоцеротовых, обеспечивая своих хозяев азотом; это наверняка было очень важно для первых обитателей примитивных почв, где этот элемент не мог не быть в жестком дефиците[34]. Упоминавшиеся выше споры из позднеордовикских и раннесилурийских отложений наиболее схожи именно со спорами печеночников (достоверные макроостатки этих растений появляются позже, в раннем девоне).
Однако в любом случае мохообразные (если даже они действительно появились еще в ордовике) облик континентальных ландшафтов вряд ли изменили. Первые же сосудистые растения – риниофиты[35] – появились в позднем силуре (лудловский век); вплоть до раннего девона (жединский век) они были представлены крайне однообразными остатками единственного рода Cooksonia, простейшего и архаичнейшего из сосудистых. А вот в отложениях следующего века девона (зигенского) мы находим уже множество разнообразных риниофитов (рисунок 30). С этого времени среди них обособляются две эволюционные линии. Одна из них пойдет от рода Zosterophylum к плауновидным (в их число входят и древовидные лепидодендроны – одни из основных углеобразователей в следующем, карбоновом, периоде). Вторая линия (в ее основание обычно помещают род Psilophyton) ведет к хвощеобразным, папоротникам и семенным – голосеменным и покрытосеменным (рисунок 30). Даже девонские риниофиты еще очень примитивны и, честно говоря, неясно – можно ли назвать их «высшими растениями» в строгом смысле: у них есть проводящий пучок (правда, сложенный не трахеидами, а особыми вытянутыми клетками со своеобразным рельефом стенок), но отсутствуют устьица. Такое сочетание признаков должно свидетельствовать о том, что растения эти никогда не сталкивались с дефицитом воды (можно сказать, что вся их поверхность являет собою одно большое открытое устьице), и, по всей видимости, являлись гелофитами (то есть росли «по колено в воде», вроде нынешнего камыша).
РИСУНОК 30. Родословное древо первых наземных растений.

РИСУНОК 30. Родословное древо первых наземных растений.
Появление сосудистых растений с их жесткими вертикальными осями вызвало целый каскад экосистемных новаций, изменивших облик всей биосферы:
1. Фотосинтезирующие структуры стали располагаться в трехмерном пространстве, а не на плоскости (как это было до сих пор – в период господства водорослевых корок и лишайников). Это резко увеличило интенсивность образования органического вещества и, тем самым, суммарную продуктивность биосферы.
2. Вертикальное расположение стволов сделало растения более устойчивыми к занесению смываемым мелкоземом (по сравнению, например, с водорослевыми корками). Это уменьшило безвозвратные потери экосистемой неокисленного углерода (в виде органики) – совершенствование углеродного цикла.
3. Вертикальные стволы наземных растений должны быть достаточно жесткими (по сравнению с водными макрофитами). Для обеспечения этой жесткости возникла новая ткань – древесина, которая после гибели растения разлагается относительно медленно. Таким образом, углеродный цикл экосистемы обретает дополнительное резервное депо и, соответственно, стабилизируется.
4. Появление постоянно существующего запаса трудноразложимой органики (сконцентрированного в основном в почве) ведет к радикальной перестройке пищевых цепей. С этого времени большая часть вещества и энергии оборачивается через детритные, а не через пастбищные цепи (как это было в водных экосистемах).
5. Для разложения трудноусваиваемых веществ, из которых состоит древесина – целлюлозы и лигнина – потребовались новые типы разрушителей мертвой органики. С этого времени на суше роль основных деструкторов переходит от бактерий к грибам.
6. Для поддержания ствола в вертикальном положении (в условиях действия силы тяжести и ветров) возникла развитая корневая система: ризоидами – как у водорослей и мохообразных – тут уже не обойдешься. Это привело к заметному снижению эрозии и появлению закрепленных (ризосферных) почв.
С.В.Мейен полагает, что суша должна была покрыться растительностью к концу девона (зигенский век)[36], поскольку с начала следующего, карбонового, периода на Земле образуются уже практически все типы осадков, отлагающихся ныне на континентах. В дозигенские же времена континентальные осадки практически отсутствуют – видимо, в связи с их постоянным вторичным размывом в результате нерегулируемого стока. В самом начале карбона на континентах начинается угленакопление – а это свидетельствует о том, что на пути стока вод стояли мощные растительные фильтры. Не будь их, остатки растений непрерывно смешивались бы с песком и глиной, так что получались бы обломочные породы, обогащенные растительными остатками – углистые сланцы и углистые песчаники, а не настоящие угли.
Итак, возникшая в прибрежных амфибиотических ландшафтах густая «щетка» из гелофитов (можно назвать ее «риниофитный камыш») начинает действовать как фильтр, регулирующий плащевой сток: она интенсивно отцеживает (и осаживает) сносимый с суши обломочный материал и формирует тем самым стабильную береговую линию. Некоторым аналогом этого процесса может служить формирование крокодилами «аллигаторовых прудов»: животные постоянно углубляют и расширяют населяемые ими болотные водоемы, выбрасывая грунт на берег. В результате их многолетней «ирригационной деятельности» болото превращается в систему чистых глубоких прудов, разделенных широкими облесенными «дамбами». Так и сосудистая растительность в девоне разделила пресловутые амфибиотические ландшафты на «настоящую сушу» и «настоящие пресноводные водоемы». Не будет ошибкой сказать, что именно сосудистая растительность стала истинным исполнителем заклинания: «Да будет твердь!» – отделивши оную твердь от хляби...
Именно с вновь возникшими пресноводными водоемами связано и появление в позднем девоне (фаменский век) первых тетрапод (четвероногих) – группы позвоночных, имеющих две пары конечностей; она объединяет в своем составе амфибий, рептилий, млекопитающих и птиц (попросту говоря, тетраподы – это все позвоночные, кроме рыб и рыбообразных). В настоящее время общепринято, что тетраподы ведут свое происхождение от кистеперых рыб (Rhipidistia) (рисунок 31); эта реликтовая группа имеет ныне единственного живого представителя, латимерию[37]. Достаточно популярная некогда гипотеза происхождения четвероногих от другой реликтовой группы рыб – двоякодышащих (Dipnoi), ныне практически не имеет сторонников.
РИСУНОК 31. Преемственность анатомических структур (череп, конечности и позвонки) кистеперых рыб и амфибий: идентичные кости черепа имеют одинаковую заливку; идентичные кости обозначены одинаковыми буквами; отдельно – поперечный шлиф половинки зуба лабиритнтодонта.

РИСУНОК 31. Преемственность анатомических структур (череп, конечности и позвонки) кистеперых рыб и амфибий: идентичные кости черепа имеют одинаковую заливку; идентичные кости обозначены одинаковыми буквами; отдельно – поперечный шлиф половинки зуба лабиритнтодонта.
Необходимо отметить, что в прежние годы возникновение ключевого признака тетрапод – двух пар пятипалых конечностей – считали их однозначной адаптацией к наземному (или по меньшей мере амфибиотическому) образу жизни. Ныне, однако, большинство исследователей склоняется к тому, что «проблема появления четвероногих» и «проблема их выхода на сушу» – суть вещи разные и даже не связанные между собою прямой причинной связью. Предки тетрапод жили в мелководных, часто пересыхающих, обильно заросших растительностью водоемах непостоянной конфигурации. Судя по всему, конечности появились для того, чтобы передвигаться по дну водоемов (это особенно важно, когда водоем обмелел настолько, что у тебя уже спина начинает вытарчивать наружу) и продираться сквозь плотные заросли гелофитов; особенно же полезны конечности оказались для того, чтобы при пересыхании водоема переползти посуху в другой, соседний.
Первые, девонские, тетраподы – примитивные амфибии лабиринтодонты[38] (название это происходит от их зубов с лабиринтоподобными складками эмали – структура, прямо унаследованная от кистеперых: см. рисунок 31), такие как ихтиостега и акантостега, в захоронениях всегда встречаются вместе с рыбами, которыми, судя по всему, и питались. Они были покрыты чешуей, как рыбы, имели хвостовой плавник (похожий на тот, что мы видим у сома или налима), органы боковой линии и – в некоторых случаях – развитый жаберный аппарат; конечность их еще не пятипалая (число пальцев достигает 8), и по типу сочленения с осевым скелетом – типично плавательная, а не опорная. Все это не оставляет сомнения в том, что существа эти были чисто водными (рисунок 32); если они и появлялись на суше при неких «пожарных» обстоятельствах (пересыхание водоема), то компонентом наземных экосистем наверняка не являлись[39]. Лишь много позже, в карбоновом периоде, появились мелкие наземные амфибии – антракозавры, которые, судя по всему, питались членистоногими, но об этом речь впереди (см. главу 10).
РИСУНОК 32. Архаичный лабиринтодонт Acanthostega : скелет (а) и реконструкция в естественной обстановке (б).
РИСУНОК 32. Архаичный лабиринтодонт Acanthostega : скелет (а) и реконструкция в естественной обстановке (б).
Особого внимания заслуживает тот факт, что в девоне появляется целый ряд неродственных параллельных групп стегоцефалоподобных кистеперых рыб – причем как до, так и после возникновения «настоящих» тетрапод (лабиринтодонтов). Одной из таких групп были пандерихтиды – кистеперые, лишенные спинного и анального плавников, чего не бывает ни у каких других рыб. По строению черепа (уже не «рыбьему», а «крокодильему»), плечевого пояса, гистологии зубов и положению хоан (внутренних ноздрей) пандерихтиды очень сходны с ихтиостегой, однако приобрели эти признаки явно независимо. Таким образом, перед нами процесс, который можно назвать параллельной тетраподизацией кистеперых (он был детально изучен Э.И.Воробьевой). Как обычно, «заказ» на создание четвероногого позвоночного, способного жить (или, по крайней мере, выживать) на суше был дан биосферой не одному, а нескольким «конструкторским бюро»; «выиграла конкурс» в конечном итоге та группа кистеперых, которая «создала» известных нам тетрапод современного типа. Однако наряду с «настоящими» тетраподами еще долго существовал целый спектр экологически сходных полуводных животных (типа пандерихтид), сочетающих признаки рыб и амфибий – если так можно выразиться, «отходы» процесса тетраподизации кистеперых.
<< | >>
Источник: К. Ю. Еськов. ИСТОРИЯ ЗЕМЛИ И ЖИЗНИ НА НЕЙ. 1999

Еще по теме 8. Ранний палеозой: «выход жизни на сушу». Появление почв и почвообразователей. Высшие растения и их средообразующая роль. Тетраподизация кистеперых рыб.:

  1. 9. Поздний палеозой – ранний мезозой: криоэры и термоэры. Палеозойские леса и континентальные водоемы – растения и насекомые.
  2. Поздний протерозой и ранний палеозой - распад Родинии и его следствия
  3. 10. Эволюция наземных позвоночных (1): поздний палеозой – ранний мезозой. Анамнии и амниоты. Две линии амниот – тероморфная и завроморфная.
  4. Основные модели динамики в системах хищник—жертва и растение —растительноядное животное: тенденция к появлению циклических колебаний
  5. 5. Ранний докембрий: древнейшие следы жизни на Земле. Маты и строматолиты. Прокариотный мир и возникновение эукариотности
  6. Глава 5. ИЗМЕНЕНИЯ В ЖИЗНИ СЕМЬИ С ПОЯВЛЕНИЕМ НОВОРОЖДЕННОГО
  7. Мутуализм, включающий разведение растений или животных Человек как мутуалист культурных растений и домашних животных
  8. КАК ПОЗВОНОЧНЫЕ ВЫБРАЛИСЬ НА СУШУ?
  9. § 3. Роль экономики в жизни общества
  10. 1. Экономика, ее роль в жизни общества
  11. § 19. Роль СМИ в политической жизни
  12. РОЛЬ ИДЕОЛОГИИ В ПОЛИТИЧЕСКОЙ ЖИЗНИ
  13. 3. Наука и ее роль в жизни общества
  14. 10.2. Самоидентификация и ее роль в национальной жизни
  15. § 33. Роль религии в жизни общества
  16. РОЛЬ РЕЛИГИИ В ЖИЗНИ ОБЩЕСТВА
  17. КАК ЗАСЕЛИЛИ СУШУ ?